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The healing process of fractured polymers is analysed on the basis of the minor chain model. The healing at 
the interface by interdiffusion is described in terms of the concentration of minor chains. Chain scission 
would occur at the surfaces of fractured polymers and the resulting minor chains play an important role in 
the healing process. The localized minor chains at the interface dominate over the fiat distribution of the 
chains in the bulk of the polymer. The molecular quantities derivable from the concentration profile in the 
fracture case show drastically different behaviour compared with two pieces of a polymer that are put in 
contact for interdiffusion, the latter corresponding to the fiat chain distribution. The result suggests an 
alternative to the usual correlation for the time dependence of the fracture toughness. Copyright © 1996 
Elsevier Science Ltd. 
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I N T R O D U C T I O N  

Interdiffusion at a polymer-polymer  interface plays a 
key role in welding, blends and polymer processing. One 
way of describing the motion at the interface is the 
reptation model that was developed by de Gennes 1, and 
later by Doi and Edwards 2. Although several investi- 
gators 3 5 have studied the motion of polymer chains in 
the interface region based on the reptation model, 
including the minor chain reptation model of Kim and 
Wool 6, their studies are for simple cases such as homo- 
geneous, monodispersed pair of polymers. 

We consider here the healing process of fractured 
polymers. Of interest is the concentration of  minor 
chains that results from interdiffusion when two pieces 
from a fractured polymer are put in contact above the 
glass transition temperature (Tg) and the molecular 
quantities derivable from the concentration profile. Only 
the case of  a symmetrical interface and one-dimensional 
movement of minor chains is treated. 

C O N C E N T R A T I O N  PROFILE 

Consider a polymer fractured at a distance from the 
fractured line z. Because of  the nature of  the scission, 
there is a peak created in the chain-end distribution at the 
interface that is formed by the scission. Therefore, the 
initial chain-end distribution can be taken as a Gaussian 
distribution: 

1 [ Z2"~ 
F ( z , m ) -  ~ e x p  k -  ~m) (1) 

where F(z,m) is the probability that the chain end 
consisting of m monomers is at a distance z from the 
fractured line. 
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Without loss of  generality, one may assume that the 
chain-end distribution consists of two parts: a flat dis- 
tribution and a non-flat Gaussian distribution, since the 
addition of the flat distribution simply shifts the 
Gaussian distribution upward. This approach has the 
added advantage of  yielding the result obtained, for 
instance, for a flat distribution at large times by Zhang 
and Wool 7. 

Consider a minor chain of length l(t) that emerges from 
its tube end at x = - X o  (e.g. Zhang and WoolT). The 
coordinate system is chosen in such a way that the 
interface plane is at x -- 0. Assuming random conforma- 
tion of the minor chain, the probability p(x, sl - Xo) that 
the sth monomer, which is a terminal segment in the 
minor chain, is located at x from the interface is given 
by 

1 ( (x±xo)2  
p(x, sl - xo) -- ~ e x p  2sa2 j (2) 

where a is the length of the monomer. Therefore, the 
total number of monomers in minor chainsflx,t)  is given 
by 

f (x,  t) =J~(x, t) 

s=n t z=oo /m=N 

+LoLo 
2'bNaS 

F(z, m)p(x, s/z) ~ dzdmds (3) 

where f i  is for the flat distribution given by 

/ ;=n/xO:°e  2¢I)N a ' 
ff(x, t) = p(x, s l - x o ) ~ d x o d s  (4) 

0 0=0 

Here (2aVNaSdxo/M) is the number of minor chain ends 
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in the volume element Sdxo between the interval distance 
(-x0,  -x0  - dx0), where S is the interfacial cross-sectional 
area, Na is Avogadro's number, • is the uniform mass 
density of a bulk polymer in the melt state, and M is the 
molecular weight of  the bulk chains. The number of 
monomers in a minor chain is denoted by s, n' is the 
number of monomers in the minor chain for the frac- 
tured case and n is the same for the bulk that is to be 
defined in equation (7), and the number of monomers in 
the bulk chains is given by N. 

The monomer concentration profile for the minor 
chains, CA (x, t), occurring at x from the interface at time 
t is given by 

t) = + f ( x ,  t) (5) CA(X, 

An approximation is made in carrying out the inte- 
gration forf(x,t). When a polymer is fractured, most of 
the chain ends formed by the scission would be at the 
edge so that the Gaussian distribution can be thought of 
as a delta function, i.e. F(z, m) ~_ F(z, m)6(z). 

With this approximation, substitution of equation (3) 
into equation (5) and carrying out of the indicated 
integration yields 

@ x x exp - 
C A = ~  ner fc  ~ n  V 7Ta 

-) 

+ ~ erfc 

2~ 2/2-NF 2 ~ 1  

 erfc{ )l (6) 

where 

n = N l(t) = -~N (16Dt/Tr)l/2 = !(16Dt/Tr)l/2 

n' N ' ,  ~7( ~( = --~/(t) = 16Dtt/Tr) 1/2 = 16D't/Tr) U2 

N' = (TvN/2) 1/2 

L' = N'. a 

M' = (Tr/2N)I/2M 

D cxM -I 

D'cx(M' )  I ~ M  1/2 (7) 

Here l is the average minor chain length 7, D is the one- 
dimensional curvilinear diffusion coefficient and L is the 
contour length of  the chain of N monomers. The primed 
quantities of l', N', D' and L' are the counterparts of  l, N, 
D, and L for the fractured case. 

After the reptation time of the bulk chains, T~, has 
elapsed, i.e. when t = Tr, l = L/2 and n = N/2, and 
noting that M = M 0 • N, equation (6) reduces to 

X -  X 
CA(X, Tr)/(~/M) = 0.5 + erfc 

{ x  2) 
- ) 

- 2 erfc ad(~/2)l/2 

1 x 2 

where d -= {r2) 1/2 = (Na2) 1/2, i.e. d is the square root of 
the mean square end-to-end distance (r) of the Gaussian 
chains. Calculated concentration profiles are shown 
in Figure 1. This shows normalized concentration pro- 
files as a function of the distance from the interface at 
various times. Because of the abundance of  minor chains 
at the interface, the profiles approach the profile at the 
reptation time (t/Tr = 1) very rapidly, as opposed to 
the gradual approach for the flat distribution 7. 

N U MBER OF MONOMERS CROSSING THE 
INTERFACE 

The number of monomers N(t) crossing the interface by 
time t is obtained as follows: 

x ( o  = CA/( /Mo)ax 

_ 2 
1 \ (5 n a v ~  + (9) ) 

Substitution of  equation (6) for n, n ~, D and f f  into 
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Figure 1 Normalized concentration profile at the interface Rg is the 
radius of gyration and T r is the reptation time 
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equation (9) yields 

N ( t ) =  4a__N_~ °D3/4M-3/4tl/2( ~ 2~__~ tl/4 

+ V/-~DoI/4 M1/2 ) (10) 

where D has been used as D = D0 Mq (q = - 1, for D and 
q = - 1/2 for O'). 

The first term in the parentheses of equation (10) is 
that corresponding to the flat distribution that was 
obtained by Zhang and Wool 7. The second term is the 
contribution due to the minor chains formed by scission. 
It is of interest to find the time it takes for the first time, 
te, to be of the same order of magnitude as that for the 
second term. This time follows from equation (10) and is 

x/~Dol/4M1/2 
te = l 4 - - - ' ~ a  ] (11)  

The first term in the parenthesis of equation (10) is set 
equal to the second term for te. Using the values in Table 
1 for polystyrene, for example, the time becomes 

t e '~  (3 x 1011)4S 

This time can be compared with the reptation time Tr, 
which is 

t 2 
T r _~ DTr 2 ---- 105s 

It is seen that it takes a much longer time than the 
reptation time for the effect of the scission to die out to 
approach the flat distribution case. Thus, the scission 
effect is dominant over a long period of time. It follows 
then, that 

N(t) ~ tl/2M -5/4 (12) 

This com4pares with the flat distribution result 7, given by 
3/4 7/ t M -  . Our result here for the scission happens to 

coincide with the widely used model that N(t) ~ t V2 for 
t>  T 7. 

OTHER QUANTITIES DERIVABLE FROM THE 
CONCENTRATION PROFILE 

The concentration profile given by equation (8) can also 
be used to derive several molecular quantities of interest. 
Consider first the average interpenetration depth X(t). 
This depth can be obtained from 

/0 F X(t) = XCA(X, t)dx/ CA(X, t)dx (13) 

Use of equation (6) in equation (13) leads to 

(O~/4t 1/4 -4- 4 ~ ~ 1.¢5/8"~ 
X(t) = atl/4M -1/4 -3V--Y-Va--'~'~ ) (14) 

(4  / - ' ~ ' t l / 4  + v/-~Ool/4M,/2) Vyr 

Here again, the first term in the parenthesis of equation 
(14) is for the flat distribution and the second term 

Table 1 Values used for polystyrene example 

M0 = 102gmo1-1 N = 2000 
Tg = 400K r / =  4 x 105 Pas  
D = 1.38 × 10-17m2 s -1 (from D r / =  CkT, T a t  Tg) 
Do = 2.8 x 10 -~5 m 2 s -~ 

a = 10 -7 cm 

corresponds to the effect of the scission. The time te can 
also be calculated using the values in Table 1 and is 

te "~ (2 × 1011)4S 

It is seen that for a long time (much longer than the usual 
reptation time, but smaller than te) the second term in the 
numerator of equation (14) dominates and therefore the 
first term can be neglected to give 

X(t) '~ tl/aM-l/8 (15 )  

For the polymer with no scission, the dependence 7 
is  tl/aM -174. 

The number of bridges intersecting a unit area of the 
interface is the same as the number of monomers per unit 
volume at the interface. Therefore, equation (8) yields 

p ( t ) = C A ( O , t ) = ~  ~ +  V 7r aN 

= C 1 tl/2M -3/2 + c2tl/aM -9/8 (16) 

where C 1 and C 2 a r e  constants that are independent of t 
and M. The second term dominates again and one has 

p(t) ,,~ tl/4M -9/8 (17) 

This compares with the time dependence of p(t) of t 1/2 
for the flat distribution 7. The value of te for the number 
of bridges for styrene is about (3 x 1011) 4 S. 

FRACTURE ENERGY 

The fracture energy G can be measured by a mechanical 
test. It is correlated to the fracture toughness g l i  a s  
followsS-l°: 

a ~'~ g l i  (18)  

In crack healing experiments, the fracture energy is 
considered to be linearly dependent on the number of 
entanglements at the interface 6'8'9, i.e. 

K 2 = alh (19) 

where al is the proportionality constant. The concentra- 
tion of entanglements per unit surface area, ~, increases 
proportionally to the average length of chain inter- 
penetration, (/2)1/2. However, (12) 1/2 is the average 
length of a broken chain and thus it must be replaced by 
the interpenetration depth. In general, the relationship 

6 between l and X is given by 

l,-~ X 2 (20) 

It follows then that 

h X 2 

t0 
(21) 

where the subscript denotes full healing time. Use of 
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equation (21) in equation (19) yields 

Kli = a 2 X  (22) 

w h e r e  a 2 is a c o n s t a n t .  

The interpenetration depth obtained in the previous 
section (equation (14)) can now be used in equation (22) 
to arrive at the following relationship: 

Kli ~ t I/4 ol-+ tl/4 + /~ 

where the parameters c~, ,3 and 7 are given by 

3 ~ g T D o ~  l/4 

= ~, V 2 \  M / (24) 

3 = - 4 V  a \Do , ]  
(25) 

") = ~ ( 1 M I / S  - 9 ) M ' / 4  (26) 

The time dependence of the fracture toughness Kli 
obtained here, i.e. equation (23), differs from the cor- 
relation that has been used in the past, i.e. the simple 
t 1/4 dependence 8'9. In view of the difference, the data 
reported in the literature are analysed according to 
equation (23) and the results are shown in Figures 2 and 
3. Shown in Figure 2 are the data by Nguyen et al. s for 
the crack healing of SAN carried out at various levels of 
irradiation dose that causes crosslinking. The solid 
curves in the figure are the ones that are the best fit to 
the data according to equation (23). The parameters thus 
chosen are given in Table 2. It is seen that the value of ~ 
decreases with the dose. The decrease is due to an 
increase in the molecular weight (see equation (24)). It is 
also seen that the values of /3 and 7 increase with 
increasing dose but not at 800 Mrad. An increase in the 
dose results in more crosslinking and thus a decrease in 
the chain segment length, leading to an increase in/3 and 
7. At 800 Mrad, the original fracture toughness of the 
virgin material was not recovered s and this fact might be 
the reason for the abnormal behaviour. 

Shown in Figure 3 are the data by Jud et al. 9 for the 
crack healing of SAN-SAN and PMMA PMMA 
polymer pairs [SAN = styrene acrylonitrile, PMMA = 
poly(methyl methacrylate)] at 390 K. The parameters in 
Table 3 are the ones used to draw the solid curves in the 
figure. The parameters in the table for the SAN pair are 
similar in their magnitude to those for the PMMA pair, 
indicating that the segmental length and the molecular 
weight would be of the same order of magnitude. 

The healing of polymer blends is similar to crack 
healing. Therefore, the data by Kausch et al. l° are 
analysed for the blend of 5% PPO (Mw = 16000) and 
95% PS (Mw = 240 000). The best fit curve is shown in 
Figure 4 along with the data. It is seen that the healing of 
polymer blends can be well represented by equation (23), 
particularly when one of the polymers (PPO) is much 
shorter than the other. The best fit parameters in Table 4 
are of the same order of magnitude as those for crack 
healing. 

CONCLUSIONS 

The healing process of fractured polymer has been 
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Figure 2 Fracture toughness as a function of t 1/4 with various 
irradiation dose in SAN. Data from Nguyen et al. 8 
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Figure 3 Fracture toughness as a function of t I/4 in SAN-SAN and 
PMMA PMMA polymer pairs. Data from Jud et al. 9 

Table 2 Parameters used to fit the SAN data 8 

Parameter 35 Mrad 200 Mrad 800 Mrad 

~ 0.296 0.164 0.099 
3 1.60 1.74 1.91 
", 1.25 1.26 1.08 

Table 3 Parameters used to fit the data 9 of SAN-SAN and PMMA-  
PMMA polymer pairs 

Parameter SAN PMMA 

~ 0.136 0.125 
1.51 1.50 

-~ 1.24 1.24 

treated on the basis of the minor chain model. Because of 
the concentrated minor chains present at both sides of 
the fractured line (area) that is formed by the scission, the 
interdiffusion behaviour is drastically different from the 
behaviour that results when two pieces of the same 
amorphous polymer are put into contact above Tg, 
which corresponds to the flat segmental distribution. The 
molecular quantities derivable from the concentration 
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Figure 4 Fracture toughness as a function of t 1/4 in 5% PPO/95% PS 
polymer blend. Data from Kausch et al? ° 

Table 4 Parameters used to fit the data 1° of the 5% PPO/95% PS 
(polystyrene) polymer blend 

Parameter 5% PPO/95% PS 

c~ 0.121 
1.75 

7 1.18 

profile, such as the average interpenetration depth, are 
much larger in magnitude for the same time than those 
for the fiat distribution case. It is notable that the time 
dependence of the number of monomers crossing the 
interface is t 1/2, as in the widely used model, unlike that 
for the fiat distribution. The time dependence of all the 
derivable molecular quantities is weaker by a factor of 
t 1/4 compared with the fiat distribution case. 

One of the molecular quantities derived has been 
utilized to arrive at an alternative to the usual correlation 
used for the time dependence of the fracture toughness. 
Nevertheless, it should be noted that for a complete 
analysis, consideration should be given to both the 
concentration of broken chains at the fracture surface 
and the increased surface roughness due to the formation 
of crazes during the fracture event. 
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